Model-Based Clustering and Classification of Functional Data
نویسندگان
چکیده
The problem of complex data analysis is a central topic of modern statistical science and learning systems and is becoming of broader interest with the increasing prevalence of highdimensional data. The challenge is to develop statistical models and autonomous algorithms that are able to acquire knowledge from raw data for exploratory analysis, which can be achieved through clustering techniques or to make predictions of future data via classification (i.e., discriminant analysis) techniques. Latent data models, including mixture model-based approaches are one of the most popular and successful approaches in both the unsupervised context (i.e., clustering) and the supervised one (i.e, classification or discrimination). Although traditionally tools of multivariate analysis, they are growing in popularity when considered in the framework of functional data analysis (FDA). FDA is the data analysis paradigm in which the individual data units are functions (e.g., curves, surfaces), rather than simple vectors. In many areas of application, including signal and image processing, functional imaging, bio-informatics, etc., the analyzed data are indeed often available in the form of discretized values of functions or curves (e.g., time series, waveforms) and surfaces (e.g., 2d-images, spatio-temporal data). This functional aspect of the data adds additional difficulties compared to the case of a classical multivariate (non-functional) data analysis. We review and present approaches for model-based clustering and classification of functional data. We derive well-established statistical models along with efficient algorithmic tools to address problems regarding the clustering and the classification of these high-dimensional data, including their heterogeneity, missing information, and dynamical hidden structure. The presented models and algorithms are illustrated on real-world functional data analysis problems from several application area. Normandie Univ, UNICAEN, UMR CNRS LMNO, Department of Mathematics and Computer Science, 14000 Caen, France Department of Mathematics and Statistics, La Trobe University, 3086 Bundoora, Victoria Australia.
منابع مشابه
Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملOn Model-Based Clustering, Classification, and Discriminant Analysis
The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attenti...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018